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Scattering of gravity waves by a circular dock 
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The scattering of a gravity wave of wave number k by a circular dock of radius 
a and draft d - h in water of depth d is calculated through a variational approxi- 
mation. The total and differential scattering cross-sections, the peripheral dis- 
placement, and the lateral force on the dock are presented as functions of ka with 
d/a and h/d as parameters and compared with the classical results for a circular 
cylinder (h = 0). A pronounced resonance is found near ka = 2 for certain values 
of d / a  and hld. 

1. Statement of problem 
We consider the scattering of a gravity wave of amplitude co and period 27c/(~ 

by a circular dock of radius a and draft d - h in water of depth d (see figure 1 ; we 
disregard any supporting structure in z < h)§.  We assume small displacements 
and irrotational flow, so that the motion of the water is governed by the classical 
linearized theory (Lamb 1932, chapter 9). The problem for h = 0 is equivalent 
t o  the acoustical problem of the scattering of a plane wave by a circular cylinder 
(Lamb, $304). 

Following the usual convention for simple harmonic motions, we suppose that 
the free-surface displacement is given by the real part of cexp ( - id)  and pose 
the incident wave in the alternative forms 

m 

m=O 
= co C ~ ~ i ~ J ~ , ( k r ) c o s m O  

and the total disturbance in the form 

( l . l b )  

The cylindrical-wave representation of (1.1 b) follows from the plane-wave 
representation of (1.1 a)  by virtue of Jacobi’s expansion, wherein E~ is Neumann’s 
symbol : 

e0 = 1, em = 2 (m 2 1). (1.3) 

t Also Department of Aerospace and Mechanical Engineering Sciences. 

3 This study was motivated by the proposed design for an artificial island offshore from 
Also Scripps Institution of Oceanography. 

the Scripps Institution of Oceanography. 
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The wave number k is related to v through the dispersion equation 

John Miles and Freeman Gilbert 

k tanh Ed = K = v2/g. (1.4) 

We now introduce the displacement potential Q (the corresponding velocity 
potential is - ivq5) in the form 

FIGURE 1. Circular dock of draft d - h  in water of depth d (supporting structure not 
considered). 

Invoking the hypothesis of irrotational flow and the linearized free-surface 
condition and requiring the normal displacement to vanish a t  the rigid boun- 
daries, we obtain the following boundary-value problem : 

v2q5 = 0, (1.7) 

Qz = 0 ( x  = 0)) (1.8) 

q 5 Z - ~ Q  = 0 ( z  = d,r  2 a), (1.9) 
9, = 0 ( r  = a,h < x G d) ,  (1.10) 

and q5E = 0 ( z  = h, 0 6 r < a). (1.11) 

We also require the scattered waves to satisfy the appropriate radiation and 
finiteness conditions as r + CO; in particular, 6 must have the asymptotic form 

5 w ci + ~,,(a/r)~ei?A(@, (1.12) 
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where A(8) is the dimensionless scattering amplitude (cf. Morse & Feshbach 
1953). 

We seek especially the scattering amplitude, the differential scattering cross- 
section, IA(8)I2, the total scattering cross-section, 

the displacement amplitude on the periphery of the dock, <(a, 6), and the lateral 
force on the dock, X. 

We attack the boundary-value problem posed in (1.7)-( 1.1 1)  by constructing 
(in $ 2 )  representations of q5 in the interior domain (under the island) and the 
exterior domain (r > a )  in terms of the radial displacement, say f(z, O ) ,  on the 
cylindrical interface r = a, 0 < x < h, such that the solution reduces to that for 
a circular cylinder (h  = 0) iff(x, 6) =_ 0. We then (in $ 3 )  construct a Schwinger- 
type variational approximation (Levine & Schwinger 1948) to the surface-wave 
amplitude that is: (a) stationary with respect to first-order variations off(x, 8) 
about the true solution and (b)  invariant under a scale transformation off@, 8). 
We then go on to calculate the scattering amplitude (in $4) and the peripheral 
displacement and the lateral force (in $5). 

2. Modal expansions 
We obtain separate representations of +, in the interior domain, 0 < r < a 

and 0 < x < h, and the exterior domain, r 2 a and 0 < x < d, in terms of the 
auxiliary function f,(z), such that 

(2.1a) 

(2 . lb)  

We then determine f, from the requirement that II., be continuous a t  r = a in 
O < x < h .  

Solving Laplace's equation, (1.7), by separation of variables, we find that the 
most general solutions consistent with the representation (1.5) and the respective 
boundary conditions may be constructed by superposition of the modal 

(2.2a) 
solutions, 

= (r/a)mcosm6 (n = 0 ) ,  (2.2b) 

q5mn = I,(nnr/h) cos (nnzlh) cosm8 (n = 1,2 ,  .. .) 

which satisfy (1.8) and (1.11) and are bounded in r = [O,a], and 

& = K,(ar) cos ax cos m8 (a  > 0) 

= {J,(kr), H,(kr)} cosh kz cosm6 

( 2 . 3 ~ )  

(2.3b) (a  = - i k ) ,  

which satisfy (1.8) and (1.9) if a is a root of 

a tanad+K = 0. 12-41? 

t The roots of (2.4) are given by a! = ( p ~ / d ) - ( ~ / p ~ ) ,  p = 1, 2, ..., with a maximum 
error of 1 yo for Kd = 1 and of less than 1 yo for all but the lowest (p = 1) mode for ~d < 10. 

50 ' Fluid Mech. 34 



786 John Miles and Freeman Gilbert 

J, is an ordinary Bessel function, and the corresponding $hmk belong to the inci- 
dent wave; Hm is a Hankel function of the first kind (we may omit the conven- 
tional superscript 1 without ambiguity), and the corresponding $hmk represent 
outgoing surface waves, which decay exponentially with distance from the free 
surface; K,  is a modified Bessel function, and the corresponding $hma represent 
trapped internal waves, which decay exponentially as r + 00. 

We determine $, in the interior domain by expanding fm(z) in the Fourier 

series 00 

fm(z )  = Z EnFmn cos (nnzlh), (2.5) 
n=O 

h 

0 
where 

The required expansion of @,, as determined by (2.1 a) ,  then is 

F,, = (i/h)/ fm(z)  cos (nnz/h), F,, = 0. (2.6a, b )  

(2.7) 

We could add a constant to $,, corresponding to the mode obtained by setting 
m = 0 in (2.2b), but the resulting modification of the subsequent formulation 
would be trivial provided that the constraint implied by (2.6b), namely 

is satisfied. 
We find it expedient, in determining @, in the exterior domain, to introduce 

the normalizing factors 
N, = +[1+ (2ad)-lsin2ad] ( 2 . 9 ~ )  

and Nk = +[1+ (2kd)-lsinh2kd]; (2.9b) 

then, the functions Z,(x) = N,* cos a x  (2.10a) 

and Z,(Z) = N ~ ~ c o s h k ~  (2.10 b )  

have mean-square values of unity and form a complete orthogonal set in x = (0, d )  
if the spectrum of a is defined to include each of the infinite, discrete set of positive 
roots of (2.4) and, in addition, the negative imaginary root a = - ik, for which 
(2.4) is equivalent to (1.4) and 

(2.11) Km( - ikr) = &rim+'Hm(k-/). 

The solution for $7n in r > a must be of the form 

where 

(2.12) 

(2.13) 

represents the incident wave [as may be shown by substituting (2.13) into (1.2) 
by way of (1.6)], and $ms comprises only outgoing and trapped waves that must 
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be determined by (2 . la ,  b). Expanding the right-hand side of (%la ,  b) in the 
Z,(z), we find that the required expansion of II., is given by 

$m(', = {Jm(kr) - [Jh(ka)/Hh(ka)l Hm(kr)) [ zk ( z ) / zL(d ) l  

+ X Fma[aKh(aa)I-lK,(ar)Za(z), (2.14) 
a 

where (2.15) 

and, here and subsequently, the summation over a comprises each of the positive 
roots of (2.4) and, in addition, a = -ik (8, = 2, and Fmx = Fmk for a = - ik ) .  

Equating the representations of (2.7) and (2.14) at r = a, dividing the result 
through by a, and introducing 

p m  = [azL(d)I-l{Jm(ka) - [JL(ka)/HA(ka)I Hm(ka)} 

= 2i[nkaw;(ka) ZL(d)]-l, (2.16) 

and 
we obtain 

(2.17) 

(2.18) 

p m z k ( z )  = Z $ma g m ( ~ a ) Z a ( z )  + m-'8no 
a 

00 + 2 x Fm,Gm(nna/h) cos (nnzlh) (0  < z < h) (2.19) 

as the determining equation forf,,(z). Substituting the integral representations of 
Sma and Fmn from (2.6) and (2.15) into (2.19), we obtain the Fredholm integral 
equation 

n=l 

F m Z k ( z )  = 10hgm(z7 Y)fm(6)d6 (O < h) ,  (2.20) 

where 
W 

g,&, 6) = d-l x 9'm(aa)Za(z)Za($ + 7L-l enGm(nna/h) cos (nnxlh) cos (nnc/h) 
a n=O 

(2.21) 

is a symmetrical kernel. We remark that Gm(0) = ljm for m 1 and that the 
term n = 0 must be omitted from the last summation if m = 0, in which case we 
also must invoke the constraint (2.8). We also notice that the asymptotic approxi- 
mation (cf. Erd6lyi et al. 1953, 57.13.2) 

9 ' m ( ~ ~ )  - Gm(aa) N ( m 2 + ~ 2 ~ 2 ) - *  (2.22) 

is exact at  au = 0 for m 2 1 and provides a fairly good interpolation for all real a, 
although not for a! = - ika (unless ka B m). 

50-2 
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3. Variational formulation 

in the re-normalized form A, = Fmk/Fm. 

Multiplying both sides of (2.20) through by f,(z), integrating over x = (O,h), 
dividing the result through by d F L k ,  and invoking the integral representation 
(2.15) for Fmk on the right-hand side, and (3.1) on the left-hand side, of the result, 
we obtain 

We now construct a variational approximation for the surface-wave amplitude 

(3.1) 

d/ohJohfm(z) grn(Z, c ) f m ( c )  d ~ d z  
- (3.2) 

1 - - -~ 

Am [ /ohfm(z)zk(z)  dzr 
Invoking the standard variational procedure, we find that the right-hand side 
of (3.2) is stationary with respect to first-order variations offm(z) about the true 
solution to (2.20). It also is invariant under a scale transformation offm(x). 

be the 
corresponding Fourier coefficients, as obtained by replacing f, by fz in (2.6) and 
(2.15). Substitutingfz and gm from (2.21) into (3.2), we obtain 

Now, letf$(z) be a trial function of arbitrary scale and let FZn and 

Substituting f , ( x )  = Cfz(z) into (3.1) to determine the scale constant C, we 

(3-4) 
obtain 

fm(z) = (ArnFrn/FZn)f2(~)- 

We could obtain f m ( z )  to any desired approximation by truncating the Fourier 
series (2.5) at n = N ,  substituting into (3.2), and requiring the result to be sta- 
tionary with respect to first-order variations of each of Fmo, Fml, ..., FmN to 
obtain N +  1 linear equations in Fmo, Fml,. .., FmN ( N  equations if m = 0, since 
Foo = 0); however, this is tantamount to, but less direct than, the solution of 
(2.19) by Galerkin’s method. We prefer to exploit the variational formulation 
more directly by introducing an assumed trial function into (3.3). 

Remarking that the radial displacementf,(x) cos m0 is excited by the incident- 
wave component $,(x), which exhibits the z-dependence Z,(z), we choose 
fiT, = 2, for rn 1 and add a constant term for m = 0 in order to satisfy (2.8): 

(3.5) 

(3.6) 

f;(z) = N&cosh k z -  ~Y,,(kh)-~ sinh kh], 

where S,, is the Kronecker delta. Substituting (3.5) into (2.6) and (2.15), we 
obtain Fkn = ( - )nNj$(nzn2 + k2h2)-lkh sinh kh, 

Fza = (NaNk)-h{(a2d” + k2d2)-l [ad sin ah cosh kh 

+ kd cosahsinhkh] -S,o(ccdkh)-lsinahsinhkh}, (3.7) 

and p z k  = *(h/d)N;l[ 1 + (2kh)-lsinh 2kh - 2&m,(kh)-2 sinh2 kh]. (3.8) 

The variational approximation based on the trial function of (3.5) has the 
virtue of yielding the exact results for the scattering cross-section and the lateral 
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force on the dock in the limit ka -+ 00. More accurate results for small values of ku 
might be obtained by using a trial function that reproduces the singularity in 
f(z) at z = h, but this singularity is so weak that the differences are unlikely to be 

8 

6 

-5 
Q 4  

2 

0 
0 2 4 6 8 10 

ka 

FIGURE 2a. The total scattering cross-section, as given by (4.4), 
for dla = $. (T = Q/a. 

ka 

FIGURE 2 b .  The total scattering cross-section, as given by (4.4), 
for dla = 4. CT = Qla. 

important; and, in any event, the results for ka < 1 are of limited interest in the 
present context. 

The numerical results given in $§4 and 5 below are based on the variational 
approximation to A,, as obtained by substituting (3.6)-(3.8) into (3.3). 
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4. Scattering amplitude 
Substituting (2.14) into (1.6) and letting kr-+oo, we obtain 

Xm(r) N Jm(kr) + { - CJk(ka)/Hk(ka)J 
+ [~~kZ~(d) /kHL(a)]} (2 /nkr)Bei (k~-gm"-a" ,  (kr+co) .  (4.1) 

Substituting Fmk into (4.1) from (3.1) and (2.16b), substituting the resulting 
expression for xna into (1.2), and comparing the resulting expression for [ to 
(1.1 b )  and ( 1.12), we obtain the scattering amplitude in the form 

m 

m= 0 
A(8)  = C emAmcosrnO, (4.2) 

where A ,  = (B/n-ka)*{ - [Jk(ka)/Hk(ka)]e-i"14 + (2Am/n) [kaHL(ka)]-2ei"f4}. (4.3) 

Ka=i  
ka=! 2 - 0  

( a )  h / d = %  ( b )  h/d = + 
FIGURE 3. The differential scattering cross-section, ] A ( @ ) /  z. The cross indicates the 

centre of the dock, and the incident wave is travelling from left to right. 

Substituting (4.2) into (1.13), we obtain the total scattering cross-section in the 

form 03 

& = 2na C e, ,Ai.  (4.4) 
0 

We remark that the second term in (4.3) is asymptotically negligible compared 
with the first as ka+co, in consequence of which the asymptotic value of Q is 
that for a circular cylinder, namely (cf. Morse & Peshbach 1953, p. 1381) 

& - 4a (ka-tco). (4.5) 

We give graphical results for the total scattering cross-section, &/a, in figures 
2a, b and for the differential scattering cross-section, IA(O)12, in figures 3a, b. 
We call attention to the resonant peaks in both &/a and jA(8)J2 near ka = 2 .  
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These peaks become more pronounced as the draft, d - h, decreases (see especially 
the results for h/d = 4/5 in figure 2 b)  and are characteristic of the limiting case 
of scattering by a rigid disk (d  - h+ 0); on the other hand, they disappear in the 
limit h+ 0, wherein the scattering tends to that for a circular cylinder. 

5. Peripheral disturbance 
The ratio of the wave amplitude at  the dock to that of the incident wave, 

obtained by setting r = a in (1.2), is of special interest. Substituting (2.14) into 
( 1.6) and introducing x t ) ( a )  = 2i[nkaH~(ka)]-l, (5.1) 

we obtain ~ m ( a )  = x$’(c~) -a  C F m a  gma(aa)ZA(d) .  (5.2) 

Substituting aFmk = AmX%a)/Z;(d) (5.3) 

from (3.1) and (2.16b), and [cf. (3.4)] 

%ma = Fmk(F*ma/s*mk> 
into (5 .2) ,  we obtain 

(5.4) 

x m ( a )  = x%)(a) I1 - Am x (s&a/F*mk) [ZA(d)/Z;(d)l gm(aa)>* (5 .5)  

We remark that Xg)(a) is the amplitude ratio in the special case h = 0. 
The peripheral displacement obtained by substituting (5.5) into (1.2) is 

plotted in figures 4a, b. We observe that the variation of the displacement with 
ka in the illuminated and shadow zones follows classical behaviour. 

The wave-induced force on the dock is in (or opposite to) the direction of the 
incident wave and is given by the real part of X exp ( - id), where 

x = pCTyou /02ajhd$(a, 8, 2) cos 8dodz ( 5 . 6 ~ )  

(5.63) 

and (5.6b) follows from ( 5 . 6 ~ )  by virtue of (1.5). Setting r = a and m = 1 in 
(2.14) andinvoking (5.1), (5.3) and (5.4), we obtain 

$l(a, z )  = ( k  sinh kd)-1xlo’ (a)  (cosh kz - A, x (FT&/p&) (Nk/Na)* g1(aa) cos ax] .  

Substituting (5.7) into (5.6b) and dividing the result through by the displace- 

a 
(5.7) 

ment weight, 

we obtain 
W = na2(d - h)pg, ( 5 4  

Nk sin ad - sin ah 
a 31(aa) 

X 
w - ka sinh kd {- k d - k h  

2iKco:,xio)(a) sinh kd - sinh kh ( ad-ah 
- 

15.9) 

The result (5.9) is plotted in figures 5a, b. We observe that the maximum value 
of X / W  increases with increasing draft, as also does the wavelength at  which 
this maximum occurs. A practical design criterion appears to involve a compro- 
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mise. As the draft of the dock increases the scattering cross-section, Q,  decreases, 
but the wave-induced force, X /  W ,  increases. Small Q is desirable for near-shore 
docks in order to minimize changes in beach-transport processes; on the other 

(4 hld = Q (6) h/d = f 
FIGURE 4. T!he peripheral displacement relative to  that of the incident wave. The cross 
indicates the centre of the dock, and the incident wave is travelling from left to right. 

hand, small X i  W is desirable so that design safety factors can be optimized. 
The theoretical and numerical results presented here should be a useful engineer- 
ing aid in reaching a practical compromise. 

This w o k  was partially supported by the National Science Foundation and 
by the OGce of Naval Research. 
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793 

- 

ka 

FIGURE 5a. The lateral force on the dock relative to the product of the buoyancy force 
and the amplitude ratio &/a, as given by (5.9), for d/a = 2. 

ka 

FIGURE 56. The lateral force on the dock relative to the product of the buoyancy force and 
the amplitude ratio cola, ae given by (5.9), for dla = 4. 
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